191 research outputs found

    Assembling Metal Complexes and Bridging Ligands for Photoactive Supramolecular Systems

    Get PDF
    Metal complexes and bridging ligands can provide useful building blocks for the design and construction of nanostructures and molecular devices capable of performing specific photoinduced functions. The choice of molecular components with appropriate structural and photophysical properties will be discussed and some multicomponent systems reviewed

    Aggregation-Induced Emission in Electrochemiluminescence: Advances and Perspectives

    Get PDF
    The discovery of aggregation-induced electrochemiluminescence (AIECL) in 2017 opened new research paths in the quest for novel, more efficient emitters and platforms for biological and environmental sensing applications. The great abundance of fluorophores presenting aggregation-induced emission in aqueous media renders AIECL a potentially powerful tool for future diagnostics. In the short time following this discovery, many scientists have found the phenomenon interesting, with research findings contributing to advances in the comprehension of the processes involved and in attempts to design new sensing platforms. Herein, we explore these advances and reflect on the future directions to take for the development of sensing devices based on AIECL

    Photo-induced processes in dendrimers

    Get PDF

    Disintegratable core/shell silica particles for encapsulating and releasing bioactive macromolecules

    Get PDF
    The present invention relates to disintegratable core/shell silica particles encapsulating a bioactive macromolecule or bioactive macromolecule cluster in an active conformation, a method for producing the same, and uses thereof

    Fast targeting and cancer cell uptake of luminescent antibody-nanozeolite bioconjugates

    Get PDF
    Understanding the targeted cellular uptake of nanomaterials is an essential step to engineer and program functional and effective biomedical devices. In this respect, the targeting and ultrafast uptake of zeolite nanocrystals functionalized with Cetuximab antibodies (Ctxb) by cells overexpressing the epidermal growth factor receptor are described here. Biochemical assays show that the cellular uptake of the bioconjugate in the targeted cancer cells already begins 15 min after incubation, at a rate around tenfold faster than that observed in the negative control cells. These findings further show the role of Ctxb exposed at the surfaces of the zeolite nanocrystals in mediating the targeted and rapid cellular uptake. By using temperature and pharmacological inhibitors as modulators of the internalization pathways, the results univocally suggest a dissipative uptake mechanism of these nanomaterials, which seems to occur using different internalization pathways, according to the targeting properties of these nanocrystals. Owing to the ultrafast uptake process, harmless for the cell viability, these results further pave the way for the design of novel theranostic tools based on nanozeolite

    The Role of a Confined Space on the Reactivity and Emission Properties of Copper(I) Clusters

    Get PDF
    Metal clusters have gained a lot of interest for their remarkable photoluminescence and catalytic properties. However, a major drawback of such materials is their poor stability in air and humidity conditions. Herein we describe a versatile method to synthesize luminescent Cu(I) clusters inside the pores of zeolites, using a sublimation technique with the help of high vacuum and high temperature. The porous materials play an essential role as a protecting media against the undesirable and easy oxidation of Cu(I). The obtained clusters show fascinating luminescence properties, and their reactivity can be triggered by insertion in the pores of organic monodentate ligands such as pyridine or triphenylphosphine. The coordinating ligands can lead to the formation of Cu(I) complexes with completely different emission properties. In the case of pyridine, the final compound was characterized and identified as a cubane-like structure. A thermochromism effect is also observed, featuring, for instance, a hypsochromic effect for a phosphine derivative at 77K. The stability of the encapsulated systems in zeolites is rather enthralling: they are stable and emissive even after several months in the air

    Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids

    Get PDF
    Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host–guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems

    Injectable Hybrid Hydrogels, with Cell-Responsive Degradation, for Tumor Resection

    Get PDF
    Biocompatible soft materials have recently found applications in interventional endoscopy to facilitate resection of mucosal tumors. When neoplastic lesions are in organs that can be easily damaged by perforation, such as stomach, intestine, and esophagus, the formation of a submucosal fluid cushion (SFC) is needed to lift the tumor from the underlying muscle during the resection of neoplasias. Such procedure is called endoscopic submucosal dissection (ESD). We describe an injectable, biodegradable, hybrid hydrogel able to form a SFC and to facilitate ESD. The hydrogel, based on polyamidoamines, contains breakable silica nanocapsules covalently bound to its network and able to release biomolecules. To promote degradation, the hydrogel is composed of cleavable disulfide moieties that are reduced by the cells through secretion of glutathione. The same stimulus triggers the breaking of the silica nanocapsules; therefore, the entire hybrid material can be completely degraded and its decomposition depends entirely on the presence of cells. Interestingly, the hydrogel precursor solution showed rapid gelation when injected in vivo and afforded a long-lasting high mucosal elevation, keeping the cushion volume constant during the dissection. This novel material can provide a solution to ESD limitations and promote healing of tissues after surgery

    Discovery of a size-record breaking green-emissive fluorophore: small, smaller, HINA

    Get PDF
    Astonishingly, 3-hydroxyisonicotinealdehyde (HINA) is despite its small size a green-emitting push–pull fluorophore in water (QY of 15%) and shows ratiometric emission response to biological relevant pH differences (pKa2_{a2} ∼ 7.1). Moreover, HINA is the first small-molecule fluorophore reported that possesses three distinctly emissive protonation states. This fluorophore can be used in combination with metal complexes for fluorescent-based cysteine detection in aqueous media, and is readily taken up by cells. The theoretical description of HINA\u27s photophysics remains challenging, even when computing Franck–Condon profiles via coupled-cluster calculations, making HINA an interesting model for future method development

    Influence of Substituents on the Energy and Nature of the Lowest Excited States of Heteroleptic Phosphorescent Ir(III) Complexes: A Joint Theoretical and Experimental Study

    Get PDF
    Abstract: A series of Ir(III)-based heteroleptic complexes with phenylpyridine (ppy) and 2-(5-phenyl-4H-[1,2,4]triazol-3-yl)-pyridine (ptpy) derivatives as coordinating ligands has been characterized by a number of experimental and theoretical techniques. Density functional theory (DFT) calculations were able to reproduce and rationalize the experimental redox and excited-states properties of the Ir complexes under study. The introduction of fluorine and trifluoromethyl substituents is found not only to modulate the emission energy but also often to change the ordering of the lowest excited triplet states and hence their localization. The lowest triplet states are best characterized as local excitations of one of the chromophoric ligands (ppy or ptpy). The admixture of metal-to-ligand charge-transfer (MLCT) and ligand-to-ligand charge-transfer (LLCT) character is small and strongly depends on the nature of the excited state; their role is, however, primordial in defining the radiative decay rate of the complexes. The extent of charge-transfer contributions depends on the energy gaps between the relevant molecular orbitals, which can be modified by the substitution pattern
    • …
    corecore